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We consider the ferromagnetic Ising model with Glauber spin flip dynamics
in one dimension. The external magnetic field vanishes and the couplings are
i.i.d. random variables. If their distribution has compact support, the disorder
averaged spin auto-correlation function has an exponential decay in time. We
prove that, if the couplings are unbounded, the decay switches to either a power
law or a stretched exponential, in general.
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1. INTRODUCTION AND MAIN RESULTS

In one dimension the Ising model with spin flip dynamics has exponentially
fast mixing in time, as is reflected by the fact that the self-adjoint generator
of the stochastic dynamics has a spectral gap, see ref. 1 for example. One
might wonder what happens to the exponential decay when the couplings
are disordered. If the couplings are uniformly bounded, it is proved in
refs. 2 and 3 that the generator still has a spectral gap. Thus the case of
interest is when the couplings are unbounded. It is easy to see that then the
spectral gap vanishes with probability one. The goal of our paper is to
estimate how the missing spectral gap is reflected in the decay of the dis-
order averaged spin-spin correlation. In particular we will have to identify
those realizations of the couplings which are responsible for a slow decay.



Results on the relaxation to equilibrium of Glauber-type dynamics for
disordered systems have been discussed before by many authors. One-
dimensional stochastic spin models with unbounded random couplings
were considered in refs. 3, 4, and 6, where stretched exponential relaxation
under typical couplings was observed. Here we study the average behavior
of the dynamics. Using a new approach, based on the oscillation theorem,
we find an explicit relation between a probability distribution of the cou-
plings and convergence properties of the disorder averaged spin auto-cor-
relation function.

The model under the study is the one-dimensional Ising model with
formal Hamiltonian

H(s, w)=− C
x ¥ Z

wxsx − 1sx. (1)

Here sx= ± 1 are the Ising spins, s ¥ W={1, −1}Z, and wx are the cou-
plings. We assume that {wx, x ¥ Z} are i.i.d. random variables with a
common probability distribution P. The model is assumed to be ferro-
magnetic, wx \ 0, i.e., P is supported in R+. The family of random
variables w={wx, x ¥ Z} is an ergodic random field on Z with the space of
realizations RZ

+ and the probability distribution P=PZ. It is known that
for every bounded realization of the random field w and that for P-a.e.
unbounded w the random spin system with Hamiltonian (1) has a unique
limit Gibbs measure nw for arbitrary inverse temperature b. (2, 3, 5, 6) To sim-
plify our notation we include b into the definition of the coupling wx.

For a fixed realization of the couplings the Ising spin configuration s

evolves in time through spin flips as specified by the flip rates

c(x, s, w)=
1

1+e−Dx(s, w) ,

Dx(s, w)=H(s (x), w) − H(s, w), s (x) ¥ W, s (x)
y =˛sy, y ] x,

− sy, y=x.

Let us notice that our choice of the flip rates implies a Jacobi structure of
the generator of the Glauber dynamics in the one-spin sector, see (8) below.
In the general case the representation (8) doesn’t hold.

Thus in a short time interval dt the spin configuration s changes to the
spin configuration s (x) with probability c(x, s, w) dt and remains un-
changed with probability 1 − ;x c(x, s, w) dt. It is proved in ref. 7 that this
rule defines a Markov process, denoted here by

sw(t)={sw
x (t), x ¥ Z, t \ 0},
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with state space W. We assume that the t=0 distribution of sw(t) is the
Gibbs measure nw. Then sw(t) is stationary in time and reversible. The
corresponding stochastic semigroup Tt is self-adjoint on the Hilbert space
Hw=L2(W, dnw). Tt is generated by

(L(w) f )(s)= C
x ¥ Z

c(x, s, w)(f(s (x)) − f(s)), f ¥ D … Hw, (2)

as acting on cylindrical functions D … Hw. The operator L(w) can be
extended in Hw to a self-adjoint (unbounded) operator for P-a.e. w (7, 3) and
will be denoted by the same symbol. Let

l0=sup{(Lk, k), ||k||=1, (k, 1)=0}

denote the upper edge of the spectrum of the operator L(w) in the subspace
orthogonal to {1}. l0 is constant almost surely.

The goal of our paper is to obtain the long-time behavior for the dis-
order averaged time-autocorrelation function

S(t)=OOsw
0 (t), s0(0)PP(w)P, t Q .. (3)

Here O ·PP(w) is the average over the process sw(t) under a fixed realization
w, and O ·P is the average over the distribution P of random couplings. We
are interested in the case of unbounded couplings when

P(wx > K) > 0 for any K > 0.

In this case with probability one the operator L has no spectral gap, see for
example ref. 3, which implies l0=0.

As our main result we state

Theorem 1. Let P(wx > K) > 0 for every K > 0, and

1 < O(cosh wx)4P < .. (4)

Then for large enough t the following estimate holds

C2
1 te−G2(t)

` − g'

2 (m2(t))
22

[ S(t) [ C1
1 te−G1(t)

` − g'

1 (m1(t))
2

1
2

(5)

with positive constants C1, C2 independent on t. Here

g1(m)=ln P 1wx >
1
4

ln
1
m
2 , g2(m)=2 ln P 1wx >

1
2

ln
1

c m
2 ,
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with m ¥ (0, 1) for suitable constant c, 0 < c < 1. Gj is the Legendre trans-
form of gj,

Gj(t)= min
m ¥ (0, 1)

(tm − gj(m)), t > 0, j=1, 2,

where the minimum is taken at mj(t).

Examples. (i) If P(wx > u) ’ e−ku for u Q . with k > 4, then one
has

g1(m, t)=
k
4

ln m, m ¥ (0, 1), m1(t)=
k
4t

,

g2(m, t)=k ln cm, m ¥ (0, 1), m2(t)=
k
t

,

and

C2(1+t)−2k [ S(t) [ C1(1+t)−k
8

with constants C1, C2 independent on t.

(ii) If P(wx > u) ’ e−ua

for u Q . with a > 1, then one has

g1(m, t)=−11
4
2a 1 ln

1
m
2a

, m ¥ (0, 1),

m1(t)=a 11
4
2a (ln t)a − 1

t
(1+o(1)), t Q .,

g2(m, t)=−2 11
2
2a 1 ln

1
cm
2a

, m ¥ (0, 1),

m2(t)=2a 11
2
2a (ln t)a − 1

t
(1+o(1)), t Q .,

and

C2e−4 ( 1
2
)a (ln t)a (1+o(1)) [ S(t) [ C1e−1

2
( 1

4
)a (ln t)a (1+o(1))

with some positive constants C1, C2.

Our analysis estimates the integrated density of states of the generator
L in the one-spin sector near zero. Using techniques from the oscillation
theorem (see refs. 8 and 11, for example) we establish a relation between
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realizations of the random couplings and the integrated density of states.
This approach is exploited already in refs. 9 and 10 in the case of bounded w.
There the sub-leading correction to the exponential decay of S(t) is deter-
mined through an analysis of the asymptotics of the density of states. For
unbounded couplings, however, a new mechanism appears resulting in a
novel behavior for the spectral characteristics of the generator. For
bounded couplings the spectrum near the upper edge comes from low
probability, atypical random couplings, for which there are long stretches
close to the maximum. They result in a Lifschitz tail in the integrated
density of states. This type of spectrum boundary is called fluctuation
boundary. In contrast, as follows from the arguments given below, for
unbounded couplings the main contribution to the spectrum close to zero
comes from rapid oscillations of the couplings over short intervals. This
behavior of the spectral characteristics of the generator determines the
leading decay of the disorder averaged auto-correlation function. In par-
ticular, this implies that the sub-leading decay for bounded couplings is
unrelated to the leading decay for unbounded couplings.

2. REDUCING SUBSPACE, PROOF OF THEOREM 1

The auto-correlation (3) can be rewritten as follows

S(t)=O(e tL(w)s0, s0)P=O(e tL1(w)s0, s0)P. (6)

We must explain the meaning of the operator L1=L1(w). Since the work
of R. Glauber (12) it is known that the linear span of ‘‘one-point configura-
tions’’ {sx, x ¥ Z} forms an invariant subspace for the generator L(w) of
(2). Moreover, the same invariant subspace H1(w) … Hw is spanned by the
functions

vx(s, w)=cosh wx · sx − sinh wx · sx − 1, x ¥ Z, (7)

see ref. 2. The functions (7) form the orthonormal basis in H1(w). We
denote by L1(w) the restriction of the generator L(w) to the invariant sub-
space H1(w).

The operator L1 has the following symmetric representation in the
basis {vx, x ¥ Z}

L1vx=Ax, x − 1vx − 1+Ax, xvx+Ax, x+1vx+1, (8)
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with

Ax, x − 1=Ax − 1, x=
ax `(1 − a2

x)(1 − a2
x − 1)

(1 − a2
xa2

x − 1)
, ax=tanh wx > 0,

Ax, x=−1 −
a2

x(1 − a2
x − 1)

(1 − a2
xa2

x − 1)
+

a2
x+1(1 − a2

x)
(1 − a2

xa2
x+1)

.

We consider new random variables

Cx=
a2

x(1 − a2
x − 1)

(1 − a2
xa2

x − 1)
, Cx ¥ (0, 1). (9)

Then

Ax, x − 1=`Cx(1 − Cx) , Ax, x=−1 − Cx+Cx+1.

Using the representation (8) one can introduce the integrated density of
states N(L1, dl) for the random operator L1 by the truncated operators
L (r)

1 , r ¥ N, defined on a finite-dimensional space of functions Vr of the
form

Vr=3f (r)(s)= C
r

x=−r
fxvx

4 … H1(w).

Let PVr
be the projection on Vr. Then the truncated operator L (r)

1 =PVr
L1PVr

is given by the same formula as (8) when x=−r,..., r. We denote by
0 \ l (r)

1 \ l (r)
2 \ · · · \ l (r)

2r+1 the eigenvalues of the truncated operator L (r)
1 in

decreasing order and by k(L(r)
1 , l) the number of eigenvalues of L (r)

1

exceeding l ¥ R. Then from results in ref. 11 it follows that there exists a
non-random positive measure N(L1, dl) on R, such that with probability
one

lim
r Q .

1
2r+1

k(L(r)
1 , l)=N(L1, l)

in the sense of weak convergence of measures, where

N(L1, l)=N(L1, (l, +.)).

In addition

N(L1, l)=O(EL1
(l, +.) v0, v0)P, (10)

424 Spohn and Zhizhina



where {EL1
(dl)} is the spectral resolution of the operator L1. The repre-

sentations (8) to (9) imply (see Lemma 1 below) that the measure N(L1, dl)
is concentrated on R− , so that N(L1, l)=N(L1, (l, 0)) for negative l.

Main Lemma. Let l < 0 with |l| sufficiently small. Then

N(L1, l) \ C2
5P 1wx >

1
2

ln
1

c |l|
262

=C2eg2(|l|), (11)

N(L1, l) [ C1P 1wx >
1
4

ln
1
|l|
2=C1eg1(|l|) (12)

with positive constants Cj, j=1, 2 and a constant c, 0 < c < 1.

The proof of the main lemma will be given in Sections 3 and 4 below.
We first derive the asymptotic formula (5) based on the estimates (11), (12).

Proof of Theorem 1. (1) The upper bound. Since, see refs. 2 and 9,

sx= C
y [ x

Dx, y(w) vy, (13)

with

Dx, y(w)=(1 − tanh2 wy)1/2 tanh wy+1 · · · tanh wx, y < x,

Dx, x(w)=(1 − tanh2 wx)1/2,
(14)

we have

O(e tL1s0, s0)P= C
x [ 0

C
y [ 0

ODx, 0Dy, 0(e tL1vx, vy)P

[ C
x [ 0

C
y [ 0

OD2
x, 0D2

y, 0P
1/2 O(e tL1vx, vy)2P1/2

[ 1 C
x [ 0

OD4
x, 0P

1/422

O(e tL1vx, vy)2P1/2. (15)

The representation (14) together with the condition (4) on the distribution
of the random variables wx imply that for any x < 0

OD4
x, 0P=O(1 − tanh2 wx)2POtanh4 wx+1P · · ·Otanh4 w0P [ o |x|,

with some 0 < o < 1, so that

C
x [ 0

OD4
x, 0P

1/4 [ C=C(o). (16)
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Furthermore, for every x, y

(e tL1vx, vy)2 [ (e tL1vx, vx)(e tL1vy, vy) [ (e tL1vx, vx). (17)

Finally from (6), (15)–(17), (10), and (12) we conclude that for large t

S(t)=O(e tL1s0, s0)P [ C2O(e tL1v0, v0)P1/2

=C2 17F
R

e tl(EL1
(dl) v0, v0)82

1/2

=C2 1F
0

−.

e tlN(L1, dl)2
1/2

[ C̃1
1 t F

.

0
e−tm+g1(m) dm2

1/2

[ C1
1 te−G1(t)

` − g'

1 (m1(t))
21/2

,

where g1, G1, and m1(t) are defined in Theorem 1.

(2) The lower bound. By (7) and (4) we obtain in analogy with the
above reasoning that

O(e tL1v0, v0)P

=O(e tL1(s0 cosh w0 − s−1 sinh w0), s0 cosh w0 − s−1 sinh w0)P

[ Ocosh2 w0(e tL1s0, s0)P+Osinh2 w0(e tL1s−1, s−1)P

+2Ocosh w0 sinh w0 |(e tL1s0, s−1)|P [ 2Ocosh4 w0P
1/2 O(e tL1s0, s0)2P1/2

+2Ocosh2 w0 sinh2 w0P
1/2 O(e tL1s0, s−1)2P1/2 [ k1O(e tL1s0, s0)P1/2 (18)

with some constant k1, where we used the estimate

(e tL1s0, s−1)2 [ (e tL1s0, s0)(e tL1s−1, s−1) [ (e tL1s0, s0).

Now from (6), (18), (10), and (11) we derive for large t the lower bound on
S(t) as

S(t)=O(e tL1s0, s0)P \ kO(e tL1v0, v0)P2

=k 1F
0

−.

e tlN(L1, dl)2
2

\ C̃2
1 t F

.

0
e−tm+g2(m) dm2

2

\ C2
1 te−G2(t)

` − g'

2 (m2(t))
22

,

426 Spohn and Zhizhina



where g2, G2, and m2(t) are defined in Theorem 1. This completes the proof
of the theorem. L

3. THE ESTIMATE OF N(L1, l) FROM BELOW

Let us fix the configuration w={wx, x ¥ Z}. The truncated operator
L (r)

1 (w) defined above by (8) is given by a Jacobi symmetric matrix of the
order 2r+1 with positive entries Ax, x − 1, x=−r+1,..., r. Consequently, for
any r the operator L (r)

1 has only real eigenvalues and we can exploit the
technique of the oscillation theorem in the spectral analysis for L (r)

1 .

Lemma 1. For every r and f ¥ Vr one has

0 [ ( − L (r)
1 f, f) [ 2 ||f||2.

Proof. The proof easily follows from the obvious inequalities

2 `Cy(1 − Cy) fy fy − 1 [ (1 − Cy) f2
y − 1+Cy f2

y,

2 `Cy(1 − Cy) fy fy − 1 \ − (1 − Cy) f2
y − Cy f2

y − 1. L

Lemma 1 implies that the operators L (r)
1 have only negative real

eigenvalues l (r)
j (w), j=1,..., 2r+1. First we evaluate the function k(L(r)

1 , l)
from below for l < 0.

Definition. We call a bond {x, x+1} regular, if the random
variables Cx and Cx+1, defined by (9), satisfy the condition

1+Cx − Cx+1 < |l|. (19)

Then the following estimate holds.

Lemma 2. For given l < 0

k(L(r)
1 , l) \ Rr(l), (20)

where Rr(l) is the number of regular pairs, arranged on the interval
[− r, r] without overlapping.

Proof. To calculate the number of eigenvalues of L (r)
1 exceeding

l < 0 we will exploit the oscillation theorem to the operator − L (r)
1 and

estimate the number k̃(−L (r)
1 , |l|) of eigenvalues of − L (r)

1 not exceeding |l|:
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k(L(r)
1 , l)=k̃(−L (r)

1 , |l|). Let {fx(l)} is an eigenfunction of − L (r)
1 corre-

sponding to an eigenvalue |l|. We define the standard phase jx(w) by

ctg jx+1(w)=ctg jx+1=
fx+1(l)
fx(l)

, x=−r,..., r − 1.

Then

ctg jx+1=
1+Cx − Cx+1 − |l|

`Cx+1(1 − Cx+1)
−

`Cx(1 − Cx)

`Cx+1(1 − Cx+1)
·

1
ctg jx

. (21)

By the oscillation theorem k̃(−L (r)
1 , |l|)=mr(J(l))+1, where J(l) [ |l|

is the maximal eigenvalue of − L (r)
1 not exceeding |l|, and mr(w, J(l)) is

the number of sign changes in the sequence of coordinates {fx(J(l))},
x=−r,..., r of the corresponding eigenfunction. Thus mr(J(l)) equals the
number of sites x ¥ [− r, r] with ctg jx < 0,

mr(J(l))=#{x ¥ [− r, r] : ctg jx < 0}.

Let us consider a regular bond {x, x+1}. If ctg jx < 0, then we already
have a contribution to mr(J(l)) from that bond. If ctg jx > 0, then (21)
and (19) imply that ctg jx+1 < 0. So in any case we have a contribution to
mr(J(l)) from each regular bond. Lemma 2 is proved. L

Finally by averaging the inequality (20) over realizations w and taking
the limit r Q . we have for l < 0,

N(L1, l)=lim
r Q .

Ok(L(r)
1 , l)P

2r+1
\ bP(1+C0 − C1 < |l|) (22)

with some constant b. We estimate the probability P(1+C0 − C1 < |l|)
under sufficiently small |l| in terms of the distribution P of wx.

Lemma 3. For all sufficiently small |l|

P(1+C0 − C1 < |l|) \ p0
5P 1wx >

1
2

ln
1

c |l|
262

(23)

with constants 0 < p0 < 1 and 0 < c < 1.

Proof. Let us fix some constant h, 0 < h < 1, and we denote by

p0=P(0 < tanh wx < h), 0 < p0 < 1.
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Then using the representation (9) for Cx we have for small enough |l|

P(C0+1 − C1 < |l|) \ P(C0 < |l|/2; 1 − C1 < |l|/2)

=P 1a2
0(1 − a2

−1)
1 − a2

0a2
−1

< |l|/2;
1 − a2

1

1 − a2
0a2

1

< |l|/22

\ P(a−1 > 1 − c̃0 |l|; 0 < a0 < h; a1 > 1 − c̃0 |l|)

=p0[P(ax > 1 − c̃0 |l|)]2=p0
5P 1wx >

1
2

ln
1

c |l|
262

with some c̃0 and 0 < c < 1. L

The estimate (11) on N(L1, l) from below follows from (22) and (23).

4. THE ESTIMATE OF N(L1, l) FROM ABOVE

For given l < 0 we denote by c(l)=1
4 ln 1

|l| . Then for any configuration
w={wx, x ¥ Z} we consider a decomposition of Z into two sets,

Z=Aw, l 2 Bw, l

with

Aw, l={x ¥ Z : wx > c(l)}, Bw, l={x ¥ Z : wx [ c(l)}. (24)

For any r ¥ N we denote by

B0
r, w, l={x ¥ [− r, r] : max{wx, wx − 1, wx+1} [ c(l)}

B0
r, w, l … Bw, l 5 [− r, r],

(25)

and by Wr, l … Vr the linear span of functions {vx, x ¥ B0
r, w, l}. Then the

operators

L (r)
1 =PVr

L1PVr
, L (Wr, l)

1 =PWr, l
L1PWr, l

(26)

are truncations of L1 on subspaces Vr and Wr, l respectively. Since L1 is a
self-adjoint bounded operator, we have by the minimax principle

k(L(Wr)
1 , l) \ k(L(r)

1 , l) − #{x ¥ [− r, r], x ¨ B0
r, w, l}, (27)

where, as above, k(A, l) denotes the number of eigenvalues of the operator
A exceeding l.
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Lemma 4. For any sufficiently small |l|, l < 0, and for every w we
have

k(L(Wr, l)
1 (w), l)=0, (28)

where L (Wr, l)
1 (w) is defined in (26).

Proof. We consider the bounded configuration

w̃={w̃x [ c(l), x ¥ Z},

coinciding with the configuration w on B0
r, w, l,

w̃x=wx, x ¥ B0
r, w, l.

Let Lc
1(w̃) be an operator in H1(w̃) given by (8), (9) and corresponding to

the configuration w̃. Our constructions (24)–(25) imply that the operator
L (Wr, l)

1 (w) is the same as the truncation of the operator Lc
1(w̃) on the same

subspace Wr, l. As follows from results of ref. 2 in the case of bounded
couplings, under the assumption w̃x < c(l) the upper spectrum edge of the
operator Lc

1(w̃) equals to

l0=−1+tanh 2c(l)

for a.e.-configuration w̃, so that l0 < 3
2 l for small enough l < 0. This esti-

mate is valid also for any truncation of the operator Lc
1(w̃). Thus no

eigenvalue of the operator Lc, (r)
1 (w̃) or L (Wr, l)

1 (w) can be greater than l. L

By (27) and (28) we have the following estimate

k(L (r)
1 (w), l) [ #{x ¥ [− r, r], x ¨ B0

r, w, l}

[ C #{x ¥ [− r, r], x ¥ Aw, l} (29)

with some constant C. Applying, as before, the ergodic theorem to the
inequality (29), we obtain the estimate (12) on N(L1, l) from above,

N(L1, l)=lim
r Q .

Okr(w, l)P
2r+1

[ C1P 1wx >
1
4

ln
1
|l|
2 .
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